
Adding Context to Automated Vulnerability Detection for Teaching
Software Security

Antoine DorardA, Bastian KüppersA, Ashish SaiA, Theodor SchnitzlerA

A Department of Advanced Computing Sciences

Introduction

The security of programs is a crucial aspect in the development life-cycle of software

applications. However, it seems that awareness of software vulnerabilities among students

needs to be improved as they are apparently not aware of this kind of threat [1]. Therefore,

students need to be educated about software vulnerabilities and especially need to learn two

things: How to find security vulnerabilities and how to assess and fix them correctly. To assist

in these steps, tools for Static Application Security Testing (SAST) are widely available [2]. SAST

is a method for checking the security of an application, which scans the source code of a

program for known vulnerable code patterns. However, SAST tools are known to have several

drawbacks [3]. They especially tend to produce a high rate of false alarms [4, 5], which can be

caused by a lack of analysis of the purpose of the application. This turns out to be a problem

when integrating real-life examples of SAST tools into teaching, because real vulnerabilities are

not easily distinguishable from false positives. Only by investing work in a manual inspection of

the source code can real vulnerabilities be determined. While this may work for a prepared

lecture, this yields a problem for hands-on tutorials and practical projects, leading to our

research question:

How can context information be attributed to found security vulnerabilities?

Conclusion

The integration of LLMs with SAST tools, in this case MobSF, has shown promise in reducing

false positives and enhancing the learning process for software engineering and computer

security students. The initial results suggest that providing contextual information significantly

aids students in comprehending vulnerabilities. However, the small-scale study lacks statistical

robustness, necessitating larger and more inclusive studies. Future work involves scaling the

research, refining the framework, and assessing its real-world applicability to maximize its

educational and practical benefits.

References

[1] Andrew Sanders, Gursimran Singh Walia, and Andrew Allen. 2024. Assessing common software vulnerabilities in undergraduate Computer Science assignments. DOI: 10.53735/cisse.v11i1.179

[2] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-03811-6

[3] Kaixuan Li et al. 2023. Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java. DOI: 10.1145/3611643.3616262

[4] Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study. DOI: 10.1145/2970276.2970347

[5] Brittany Johnson et al. 2013. Why don’t software developers use static analysis tools to find bugs? DOI: 10.1109/icse.2013.6606613

[6] Andrew Chen, Yanfu Yan, and Denys Poshyvanyk. 2023. ACER: An ASTbased Call Graph Generator Framework. DOI: 10.1109/SCAM59687.2023.00035

[7] Nam Nguyen and Rich Caruana. 2007. Consensus Clusterings. DOI: 10.1109/ICDM.2007.73

Correspondence to:
Dr. Bastian Küppers

b.kuppers@maastrichtuniversity.nl

Dept of Advanced Computing Sciences

T +31 43 388 34 94

Maastricht University

P.O. Box 616
6200 MD Maastricht, The Netherlands

Background

Considering the recent developments in the field of generative AI, large language models

(LLMs) can be leveraged to enhance static application security testing (SAST) tools and

teaching about this topic. These models provide contextual information about identified

vulnerabilities which can help students to differentiate genuine issues from false alarms while

learning about software security. The approach includes analyzing vulnerabilities in android

applications using SAST tools, clustering related code functionalities, and generating multi-

level summaries for detected vulnerabilities. The process employs advanced clustering

techniques and consensus-building methods to ensure accuracy.

To adjust for problems that can arise during clustering, several clustering approaches are

implemented, e.g. ACER Louvain Clustering [6] and their results are checked against each other

to reach a consensus regarding existing clusters [7]. Once the clusters are generated, a

summary is generated for each cluster containing at least one vulnerability, along with

summaries for the classes and methods contained in the cluster. The summarization process

takes all the methods and classes in a cluster and generates a summary describing the purpose

of that particular part of the code. In total, three one-sentence summaries are generated, each

at a different level of granularity. The general workflow is depicted in Figure 1.

Department of Advanced Computing Sciences

Methods

The increase in performance in LLMs in recent years provides new ways for language and code

generation, but also for understanding the, as modern LLMs can capture syntactic and

semantic nuances in code far better than their predecessors. Therefore, we used LLMs, such as

GTP-4o and Claude, in combination with the SAST tool Mobile Security Framework (MobSF).

The resulting software pipeline includes a vulnerability analysis by MobSF, followed by a

parsing step that prepares for a clustering. The purpose of clustering at this point is to group

different program functionalities together and then associate each detected vulnerability with

one of the identified clusters.

Figure 1: Overall Workflow

	Slide 1

